مصارف الزكاة في الاسلام
مقال في مجلة علمية.
المبروك عون سالم سالم، (06-2021)، ليبيا: مجلة العلوم الشرعية، 9 (4)، 1-11
تاثير برنامج مقترح بالتمارين العلاجية لتاهيل المصابين بخلع الجزئي لمفصل الكتف
مقال في مؤتمر علميسمير فرج ضو موسي، سمير فرج ضو موسي، (06-2021)، جامعة الزيتونة: مجلة الاجتهاد للأبحاث العلمية،
تاثير برنامج مقترح باستخدام التمرينات العلاجية والعلاج المائي لعلاج الألم الرقبة
مقال في مؤتمر علميسمير فرج ضو موسي، (06-2021)، جامعة المرقب: المؤتمر العلمي الدولي الأول لكلية التربية البدنة جامعة المرقب،
المصالحة الوطنية ضرورة مجتمعية
مقال في مؤتمر علميإن ما يحدث في المجتمع الليبي من أزمات سياسية واقتصادية وتنموية وما صاحبها من تداعيات يعزى إلى عدم التوافق والتعايش السلمي بين الليبيين وهذا لا يتم إلا عن طريق الصلح والتصالح. وإذا لم يتم اتخاذ التدابير اللازمة التي من شأنها أن تزيد من اللحمة الوطنية والسلم الاجتماعي فإن الأمر يزداد تعقيداً وتزداد حالة الفوضى وعدم الاستقرار، مما يهدد الأمن والسلم الاجتماعيين ولا سيما في ظل انتشار السلاح في ليبيا بشكل غير مسبوق نتج عنه العديد من الانتهاكات والتجاوزات والاختراقات الأمر الذي أدى عنه الاقتتال والحروب بين المدن، ونزوح وتجهيرً. فتولد الحقد والضغينة بين الليبيين، مما نتج عنه تمزيق النسيج الاجتماعي والوحدة واللحمة الوطنية، فقد توالت المعارك والحروب التي تركت جروحاً عميقة في جسد الوطن، وآلاما نفسية على الشعب وتراكمات عديدة من الحقد، والكراهية، والثأر، والاعتداء على الممتلكات العامة والخاصة، والخطف على الهوية، والأسر والتعذيب، والتصفية المباشرة. مما يستدعى إلى لم الشمل وتحقيق السلم والسلام في ليبيا، وضرورة تحقيق مصالحة وطنية والسعي من مؤسسات الدولة الرسمية وغير الرسمية إلى تطبيق ذلك استنادا إلى مبادئ وتعاليم ديننا الإسلامي الحنيف، واقتداء بسنة رسوله r ، والاستفادة من تجارب بعض الدول ولاسيما تجربة جنوب افريقيا التي قام بها الزعيم الراحل (نيلسون مانديلا) والتي نجح من خلالها في تحقيق المصالحة بين البيض والسود آنذاك مما أدى إلى قيام دولة، وأصبحت من الدول المتقدمة في العالم.
أسامة جمعة علي العجمي، (06-2021)، وزارة الشؤون الاجتماعية: مركز الدراسات الاجتماعية، 114-121
Generalized anxiety disorder among diabetic patients visiting Gharyan polyclinicin Libya during COVID-19 pandemic
Conference paperAims. To estimate the prevelance of Generalized anxiety disorder (GAD) in adult patients with diabetes mellitus (T1DM or T2DM) during COVID-19 pandemic. Method. Random sample of 115 Adult Libyan patients (≥18 years) were drawn from 1200 Medical records of diabetic patients previously diagnosed in a primary care clinic (Gharyan polyclinic,South of Tripoli,West of Libya). Patients were recruited and diagnostically interviewed through outpatient visits and through Phone calls. Anxiety was assessed using Generalized Anxiety Disorder 7-item instrument (GAD-7), personal information, Co morbidities and History of COVID-19 infection within period of 3 weeks. Result. The statistical analysis done by SPSS version 23, using ANOVA test. The GAD-7 scores ranged from 0 to 19 for the diabetic patient, 82 patients scores ranged from 0 to 4 with varying degrees of non-signifacant to subsyndromal symptopms of Generalized anxiety disorder, 24 patient with Mild GAD, 7 patients with moderate GAD and 2 patients with severe GAD. (P value = 0.000) Conclusion. GAD is present in 28% of the patients who participated in the study. Additional epidemiological studies are needed to determine the prevalence of anxiety in the broader population of persons with diabetes
Abduraoof Omar Ramadan Saadawi, Ahmed Khrwat, (06-2021), BJPsych Open: Cambridge University Press, 265-265
Robust and high-capacity audio watermarking basedon chirp z-transform
Conference paperA novel non-blind audio watermarking algorithm, using chirp z-transform in combination with discrete wavelet transform and singular value decomposition, is presented in this paper. In the proposed method, a watermark audio signal (about 13 seconds in length) is hidden into an original audio signal (about 51 seconds in length) by applying discrete wavelet transform, chirp z-transform, and singular value decomposition. The effectiveness of the proposed algorithm has been tested using signal-to-noise ratio, objective difference grade (ODG), and normalised cross- correlation of watermarked audio signal under various common audio attacks. Experimental results demonstrate that the algorithm has a high capacity (352.8 kbps), without significant perceptual distortion (ODG > -0.29) and provides good robustness against common audio attacks, including: re-sampling, echo addition, MP3 compression, additive white Gaussian noise, re- quantisation, cutting, and low-pass filtering. This algorithm has a high capacity and excellent audio quality compared with other audio watermarking algorithms.
Omar Moftah Ibrahim Abodena, (05-2021), 2021 29th IEEE Signal processing and communications applications conference (SIU): IEEE, 1-4
تعريف ضرب كرونكر وضرب هادامار علي حلقة المصفوفات
مقال في مجلة علميةاحلام محمد ابو القاسم الصويعي، (05-2021)، السودان: مجلة العلوم الانسانية والطبيعية، 5 (2)، 91-99
Implementation of a Brain-Computer Interface for Robotic Arm Control
Conference paper0
Saadedin O. Elwarshfani, Ahmed J. Abougarair, Hanadi M. Gnan, Abdulhamid Oun, (05-2021), ليبيا: IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 25-27 May 2021, Tripoli-Libya, 58-63
Roadmap for Utilizing Machine Learning in Building Energy Systems Applications: Case Study of Predicting Chiller Running Capacity for School Buildings Using Stacking Learning
Journal ArticleCooling accounts for 12-38% of total energy consumption in schools in the US, depending on the region. In this study, stacking learning is utilized to predict chiller running capacity for four school buildings (regression) and to predict the chiller status for four another schools (classification) using a collection of interval chiller data and building demand. Singular and multiple measurement periods within one or more seasons are considered. A generalized methodology for modeling building energy systems is posited that informs selection of features, data balancing to attain the best model possible, ensemble-based stacked learning in order to prevent over-fitting, and final model development based upon the results from the stacked learning. The results show that ensemble-based stacked learning improves the model performance substantially; providing the most accurate results for both regression and classification. for both classification and regression. For, classification, the balanced accuracy is 99.79% while Kappa is 99.39%. For regression, the R-squared value, the mean absolute error (MAE) error, and the root mean squared error (RMSE) are 1.78 kW, 2.77 kW, and 0.983 respectively.
Rodwan Elhashmi, Kevin P. Hallinan, Abdulrahman Alanezi, (03-2021), journal of Energy & Technology (JET): DOI: 10.5281/zenodo.4560626, 1 (1), 35-45
Machine Learning Enabled Large-Scale Estimation of Residential Wall Thermal Resistance from Exterior Thermal Imaging
Journal ArticleTraditional building energy audits are both expensive, in the range of USD $1.29/m 2-$5.37/m 2, and inconsistent in their prediction of potential energy savings. Automation to reduce costs of evaluating the energy effectiveness of buildings is strongly needed. A key element of such automation is a means to estimate the building envelope energy effectiveness. We present a method that addresses this need by using infrared thermography to characterize building wall envelope effectiveness. To date, thermal imaging approaches for estimating wall R-Values, based upon thermal-physical models of walls, require additional manual measurements and analysis which prohibit low-cost, large-scale implementation. To overcome this implementation challenge, a machine learning approach is used to predict wall R-Values for a set of residences with known thermal resistance by utilizing the measured wall imaging temperature, prior weather conditions, historical energy consumption data, and available building geometrical data. The developed model is shown to predict wall R-Values with a maximum test-set root mean squared error of 7% using as few as nine training houses. This result has significant implications for low-cost large-scale envelope energy effectiveness characterization.
Salahaldin Alshatshati, Kevin P Hallinan, Rodwan Elhashmi, Kefan Huang, (03-2021), journal of Energy & Technology (JET): Journal of Energy & Technology (JET), 1 (1), 46-53